Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS Negl Trop Dis ; 18(4): e0012110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598547

RESUMO

The global shipping network (GSN) has been suggested as a pathway for the establishment and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We used historical maritime movement data in combination with an agent-based model to understand invasion risk in the United States Gulf Coast and how the risk of these invasions could be reduced. We found a strong correlation between the total number of cargo ship arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Additionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports likely occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Our model results indicated that detection and removal of mosquitoes from containers when they are unloaded effectively reduced the probability of mosquito populations establishment even when the connectivity of ports increased. To reduce the risk of invasion and reintroduction of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed when containers leave high risk locations and when they arrive in ports at high risk of establishment.


Assuntos
Aedes , Navios , Aedes/fisiologia , Animais , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos , Comércio , Estados Unidos , Espécies Introduzidas
2.
Am J Trop Med Hyg ; 110(4_Suppl): 94-100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38118168

RESUMO

In the final stages of malaria elimination, interventions to reduce malaria transmission are often centered around a confirmed case of malaria, as cases tend to cluster together at very low levels of transmission. The WHO commissioned a systematic review of the literature and synthesis of evidence for reactive indoor residual spraying (IRS) to develop official recommendations for countries. Several electronic databases were searched in November 2020. A total of 455 records were identified and screened; 20 full-text articles were assessed for eligibility. Two cluster-randomized trials met the inclusion criteria for epidemiological outcomes. Risk of bias was assessed using standard criteria. Because one study was a superiority trial in which the comparator included reactive case detection or mass drug administration and the other was a noninferiority trial in which the comparator was proactive, focal IRS, results could not be pooled. In the superiority trial, reactive IRS reduced malaria prevalence by 68% (risk ratio [RR]: 0.32; 95% CI: 0.13-0.80; certainty of evidence: HIGH) compared with no reactive IRS. No difference was observed for clinical malaria (RR: 0.65; 95% CI: 0.38-1.11; certainty of evidence: MODERATE). In the noninferiority study, the mean difference in incidence between reactive IRS and proactive IRS was 0.10 additional case per 1,000 person-years, which was within the prespecified noninferiority bound (95% CI: -0.38 to 0.58; certainty of evidence: MODERATE). The evidence indicates that reactive IRS may be a cost-effective tool for the prevention of malaria in elimination settings. As only two cluster-randomized controlled trials from sub-Saharan Africa were found, additional high-quality studies should be encouraged.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Malária/epidemiologia , Malária/prevenção & controle , África Subsaariana/epidemiologia , Administração Massiva de Medicamentos , Incidência , Controle de Mosquitos/métodos
4.
Nat Med ; 29(12): 3203-3211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884028

RESUMO

Anopheles stephensi, an Asian malaria vector, continues to expand across Africa. The vector is now firmly established in urban settings in the Horn of Africa. Its presence in areas where malaria resurged suggested a possible role in causing malaria outbreaks. Here, using a prospective case-control design, we investigated the role of An. stephensi in transmission following a malaria outbreak in Dire Dawa, Ethiopia in April-July 2022. Screening contacts of patients with malaria and febrile controls revealed spatial clustering of Plasmodium falciparum infections around patients with malaria in strong association with the presence of An. stephensi in the household vicinity. Plasmodium sporozoites were detected in these mosquitoes. This outbreak involved clonal propagation of parasites with molecular signatures of artemisinin and diagnostic resistance. To our knowledge, this study provides the strongest evidence so far for a role of An. stephensi in driving an urban malaria outbreak in Africa, highlighting the major public health threat posed by this fast-spreading mosquito.


Assuntos
Anopheles , Malária Falciparum , Malária , Animais , Humanos , Malária/epidemiologia , Malária/parasitologia , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Etiópia/epidemiologia
5.
Parasit Vectors ; 16(1): 331, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726787

RESUMO

BACKGROUND: Malaria is endemic in Senegal, with seasonal transmission, and the entire population is at risk. In recent years, high malaria incidence has been reported in urban and peri-urban areas of Senegal. An urban landscape analysis was conducted in three cities to identify the malaria transmission indicators and human behavior that may be driving the increasing malaria incidence occurring in urban environments. Specifically, mosquito vector bionomics and human sleeping behaviors including outdoor sleeping habits were assessed to guide the optimal deployment of targeted vector control interventions. METHODS: Longitudinal entomological monitoring using human landing catches and pyrethrum spray catches was conducted from May to December 2019 in Diourbel, Kaolack, and Touba, the most populous cities in Senegal after the capital Dakar. Additionally, a household survey was conducted in randomly selected houses and residential Koranic schools in the same cities to assess house structures, sleeping spaces, sleeping behavior, and population knowledge about malaria and vector control measures. RESULTS: Of the 8240 Anopheles mosquitoes collected from all the surveyed sites, 99.4% (8,191) were An. gambiae s.l., and predominantly An. arabiensis (99%). A higher number of An. gambiae s.l. were collected in Kaolack (77.7%, n = 6496) than in Diourbel and Touba. The overall mean human biting rate was 14.2 bites per person per night (b/p/n) and was higher outdoors (15.9 b/p/n) than indoors (12.5 b/p/n). The overall mean entomological inoculation rates ranged from 3.7 infectious bites per person per year (ib/p/y) in Diourbel to 40.2 ib/p/y in Kaolack. Low anthropophilic rates were recorded at all sites (average 35.7%). Of the 1202 households surveyed, about 24.3% of household members slept outdoors, except during the short rainy season between July and October, despite understanding how malaria is transmitted and the vector control measures used to prevent it. CONCLUSION: Anopheles arabiensis was the primary malaria vector in the three surveyed cities. The species showed an outdoor biting tendency, which represents a risk for the large proportion of the population sleeping outdoors. As all current vector control measures implemented in the country target endophilic vectors, these data highlight potential gaps in population protection and call for complementary tools and approaches targeting outdoor biting malaria vectors.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/epidemiologia , Senegal/epidemiologia , Cidades/epidemiologia , Mosquitos Vetores , Ecologia
6.
BMJ Glob Health ; 8(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463785

RESUMO

INTRODUCTION: Indoor residual spraying (IRS) and insecticide-treated bed nets (ITNs) are cornerstone malaria prevention methods in Madagascar. This retrospective observational study uses routine data to evaluate the impacts of IRS overall, sustained IRS exposure over multiple years and level of spray coverage (structures sprayed/found) in nine districts where non-pyrethroid IRS was deployed to complement standard pyrethroid ITNs from 2017 to 2020. METHODS: Multilevel negative-binomial generalised linear models were fit to estimate the effects of IRS exposure overall, consecutive years of IRS exposure and spray coverage level on monthly all-ages population-adjusted malaria cases confirmed by rapid diagnostic test at the health facility level. The study period extended from July 2016 to June 2021. Facilities with missing data and non-geolocated communes were excluded. Facilities in IRS districts were matched with control facilities by propensity score analysis. Models were controlled for ITN survivorship, mass drug administration coverage, precipitation, enhanced vegetation index, seasonal effects and district. Predicted cases under a counterfactual no IRS scenario and number of cases averted by IRS were estimated using the fitted models. RESULTS: Exposure to IRS overall reduced case incidence by an estimated 30.3% from 165.8 cases per 1000 population (95% CI=139.7 to 196.7) under a counterfactual no IRS scenario, to 114.3 (95% CI=96.5 to 135.3) over 12 months post-IRS campaign in nine districts. A third year of IRS reduced malaria cases 30.9% more than a first year (incidence rate ratio (IRR)=0.578, 95% CI=0.578 to 0.825, p<0.001) and 26.7% more than a second year (IRR=0.733, 95% CI=0.611 to 0.878, p=0.001). There was no significant difference between the first and second year (p>0.05). Coverage of 86%-90% was associated with a 19.7% reduction in incidence (IRR=0.803, 95% CI=0.690 to 0.934, p=0.005) compared with coverage ≤85%, although these results were not robust to sensitivity analysis. CONCLUSION: This study demonstrates that non-pyrethroid IRS appears to substantially reduce malaria incidence in Madagascar and that sustained implementation of IRS over three years confers additional benefits.


Assuntos
Inseticidas , Malária , Humanos , Madagáscar/epidemiologia , Controle de Mosquitos/métodos , Malária/epidemiologia , Malária/prevenção & controle , Estudos Retrospectivos
7.
Malar J ; 22(1): 218, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501142

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum, was first reported in Ethiopia in 2016. The ecology of this mosquito species differs from that of Anopheles arabiensis, the primary malaria vector in Ethiopia. This study aimed to evaluate the efficacy of selected insecticides, which are used in indoor residual spraying (IRS) and selected long-lasting insecticidal nets (LLINs) for malaria vector control against adult An. stephensi. METHODS: Anopheles stephensi mosquitoes were collected as larvae and pupae from Awash Subah Kilo Town and Haro Adi village, Ethiopia. Adult female An. stephensi, reared from larvae and pupae collected from the field, aged 3-5 days were exposed to impregnated papers of IRS insecticides (propoxur 0.1%, bendiocarb 0.1%, pirimiphos-methyl 0.25%), and insecticides used in LLINs (alpha-cypermethrin 0.05%, deltamethrin 0.05% and permethrin 0.75%), using diagnostic doses and WHO test tubes in a bio-secure insectary at Aklilu Lemma Institute of Pathobiology, Addis Ababa University. For each test and control tube, batches of 25 female An. stephensi were used to test each insecticide used in IRS. Additionally, cone bioassay tests were conducted to expose An. stephensi from the reared population to four brands of LLINs, MAGNet™ (alpha-cypermethrin), PermaNet® 2.0 (deltamethrin), DuraNet© (alpha-cypermethrin) and SafeNet® (alpha-cypermethrin). A batch of ten sugar-fed female mosquitoes aged 2-5 days was exposed to samples taken from five positions/sides of a net. The data from all replicates were pooled and descriptive statistics were used to describe features of the data. RESULTS: All An. stephensi collected from Awash Subah Kilo Town and Haro Adi village (around Metehara) were resistant to all tested insecticides used in both IRS and LLINs. Of the tested LLINs, only MAGNet™ (alpha-cypermethrin active ingredient) caused 100% knockdown and mortality to An. stephensi at 60 min and 24 h post exposure, while all other net brands caused mortality below the WHO cut-off points (< 90%). All these nets, except SafeNet®, were collected during LLIN distribution for community members through the National Malaria Programme, in December 2020. CONCLUSIONS: Anopheles stephensi is resistant to all tested insecticides used in IRS and in the tested LLIN brands did not cause mosquito mortality as expected, except MAGNet. This suggests that control of this invasive vector using existing adult malaria vector control methods will likely be inadequate and that alternative strategies may be necessary.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Humanos , Adulto , Animais , Feminino , Inseticidas/farmacologia , Etiópia , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/epidemiologia , Resistência a Inseticidas
8.
Am J Primatol ; 85(6): e23494, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37078629

RESUMO

Parasite infestations depend on multiple host-related and environmental factors. In the case of ectoparasites, which are exposed to the environment beyond the host, an impact of climate, expressed by seasonal or yearly variations, can be expected. However, long-term dynamics of ectoparasite infestations are rarely studied in nonhuman primates. We investigated the yearly variations in ectoparasite infestations of two small primates, the gray (Microcebus murinus) and the golden-brown (Microcebus ravelobensis) mouse lemur. For a more comprehensive evaluation, we also analyzed the potential effects of yearly and monthly climatic variation (temperature, rainfall) in addition to habitat, host sex, age, species, and body mass, on ectoparasite infestation. Individuals of both host species were sampled in two study sites within the Ankarafantsika National Park in northwestern Madagascar during several months (March-November) and across 4 years (2010, 2011, 2015, 2016). Our results show significant monthly and yearly variations in the infestation rates of three native ectoparasite taxa (Haemaphysalis spp. ticks, Schoutedenichia microcebi chigger mites, Lemurpediculus spp. sucking lice) and in ectoparasite species richness in both mouse lemur species. In addition, significant impacts of several host-related (species, sex, body mass) and environmental factors (habitat, temperature, rainfall) were found, but with differences in relevance for the different parasite taxa and partly deviating in their direction. Although some differences could be attributed to either permanent or temporary presence of the parasites on the host or to ecological differences between the host species, the lack of specific knowledge regarding the life cycle and microhabitat requirements of each parasite taxon precludes a complete understanding of the factors that determine their infestation dynamics. This study demonstrates the presence of yearly and monthly dynamics in lemur-parasite interactions in tropical, seasonal, dry deciduous forests in Madagascar, which call out for broad ecological long-term studies focusing both on primate hosts and their parasites.


Assuntos
Cheirogaleidae , Animais , Madagáscar , Estações do Ano , Ecossistema , Florestas
9.
Malar J ; 22(1): 123, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055836

RESUMO

BACKGROUND: Malaria remains one of the main causes of morbidity and mortality in Cameroon. To inform vector control intervention decision making, malaria vector surveillance was conducted monthly from October 2018 to September 2020 in five selected sentinel sites (Gounougou and Simatou in the North, and Bonabéri, Mangoum and Nyabessang in the South). METHODS: Human landing catches (HLCs), U.S. Centers for Disease Control and Prevention (CDC) light traps, and pyrethrum spray catches (PSCs) were used to assess vector density, species composition, human biting rate (HBR), endophagic index, indoor resting density (IRD), parity, sporozoite infection rates, entomological inoculation rate (EIR), and Anopheles vectorial capacity. RESULTS: A total of 139,322 Anopheles mosquitoes from 18 species (or 21 including identified sub-species) were collected across all sites. Out of the 18 species, 12 were malaria vectors including Anopheles gambiae sensu lato (s.l.), Anopheles funestus s.l.., Anopheles nili, Anopheles moucheti, Anopheles paludis, Anopheles demeilloni, Anopheles. pharoensis, Anopheles ziemanni, Anopheles multicinctus, Anopheles tenebrosus, Anopheles rufipes, and Anopheles marshallii. Anopheles gambiae s.l. remains the major malaria vector (71% of the total Anopheles) collected, though An. moucheti and An. paludis had the highest sporozoite rates in Nyabessang. The mean indoor HBR of Anopheles ranged from 11.0 bites/human/night (b/h/n) in Bonabéri to 104.0 b/h/n in Simatou, while outdoors, it varied from 24.2 b/h/n in Mangoum to 98.7 b/h/n in Simatou. Anopheles gambiae s.l. and An. moucheti were actively biting until at least 8:00 a.m. The mean Anopheles IRD was 17.1 females/room, and the parity rate was 68.9%. The mean EIRs for each site were 55.4 infective bites/human/month (ib/h/m) in Gounougou, 99.0 ib/h/m in Simatou, 51.2 ib/h/m in Mangoum, 24.4 ib/h/m in Nyabessang, and 18.1 ib/h/m in Bonabéri. Anopheles gambiae s.l. was confirmed as the main malaria vector with the highest vectorial capacity in all sites based on sporozoite rate, except in Nyabessang. CONCLUSION: These findings highlight the high malaria transmission occurring in Cameroon and will support the National Malaria Control Program to design evidence-based malaria vector control strategies, and deployment of effective and integrated vector control interventions to reduce malaria transmission and burden in Cameroon, where several Anopheles species could potentially maintain year-round transmission.


Assuntos
Anopheles , Malária , Piretrinas , Animais , Feminino , Humanos , Malária/prevenção & controle , Camarões/epidemiologia , Mosquitos Vetores , Esporozoítos
10.
Med Vet Entomol ; 37(3): 491-498, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36872598

RESUMO

To combat mosquito-borne diseases, a variety of vector control tools have been implemented. Estimating age structure in populations of vector species is important for understanding transmission potential. Age-grading techniques have been used as critical methods for evaluating the efficacy of vector control tools. However, methods like mark-release-recapture and ovarian dissection are laborious and require a high level of training. For decades, scientists have discussed the wide array of acoustic signatures of different mosquito species. These distinguishable wingbeat signatures with spatiotemporal classification allow mosquitoes of the same species to locate one another for mating. In recent years, the use of sensitive acoustic devices like mobile phones have proved effective. Wingbeat signatures can be used to identify mosquito species without the challenge of intensive field collections and morphological and molecular identifications. In this study, laboratory Aedes aegypti (L.) female and male wingbeats were recorded using mobile phones to determine whether sex and age differences with chronological time, and across different physiological stages, can be detected. Our results indicate significantly different wingbeat signatures between male and female Ae. aegypti, and a change of wingbeat frequencies with age and reproduction stage in females.


Assuntos
Aedes , Masculino , Feminino , Animais , Aedes/fisiologia , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos
11.
J Am Mosq Control Assoc ; 39(2): 108-121, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972520

RESUMO

Several invasive mosquito species that are nuisances or of medical and veterinary importance have been introduced into the Southeastern region of the USA, posing a threat to other species and the local ecosystems and/or increasing the risk of pathogen transmission to people, livestock, and domestic pets. Prompt and effective monitoring and control of invasive species is essential to prevent them from spreading and causing harmful effects. However, the capacity for invasive mosquito species surveillance is highly variable among mosquito control programs in the Southeast, depending on a combination of factors such as regional geography and climate, access to resources, and the ability to interact with other programs. To facilitate the development of invasive mosquito surveillance in the region, we, the Mosquito BEACONS (Biodiversity Enhancement and Control of Non-native Species) working group, conducted a survey on the capacities of various public health agencies and pest control agencies engaged in mosquito surveillance and control in seven Southeastern states (Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, and South Carolina). Ninety control programs completed the survey, representing an overall response rate of 25.8%. We report key findings from our survey, emphasizing the training and resource needs, and discuss their implications for future invasive mosquito surveillance and control capacity building. By increasing communication and collaboration opportunities (e.g., real-time sharing of collection records, coordinated multistate programs), the establishment of Mosquito BEACONS and the implementation of this survey can accelerate knowledge transfer and improve decision support capacity in response to or in preparation for invasive mosquito surveillance and can establish infrastructure that can be used to inform programs around the world.


Assuntos
Ecossistema , Insetos Vetores , Animais , Humanos , Florida , Georgia , Louisiana , Espécies Introduzidas , Controle de Mosquitos
12.
J Med Entomol ; 60(3): 535-545, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36779801

RESUMO

Malaria is responsible for over 435,000 deaths annually, mostly occurring in sub-Saharan Africa. Detecting Plasmodium spp. sporozoites (spzs) in the salivary glands of Anopheles (Diptera: Culicidae) vectors with circumsporozoite enzyme-linked immunosorbent assay (csELISA) is an important surveillance method. However, current technological advances are intellectual property and often require of distribution and highly trained users. The transition into paper-based rapid plataforms would allow for decentralization of survillance, especially in areas where it was virtually eliminated. The addition of bio-based materials have shown the potential to improve binding of target antigens, while being widely available. Here, we evaluate the use of chitosan and cellulose nanocrystals (CNC) as antibody carriers and substrate coatings on 96-well plates and on wax hydrophobized paper plates for the detection of Plasmodium falciparum (Pf), P. vivax VK210 (Pv210), and P. vivax VK247 (Pv247). To further improve the user-friendliness of the paper plates a quantitative photograph image-based color analysis was done. Interactions between the materials and the assay antibodies were studied by quartz crystal microbalance with dissipation monitoring (QCM-D). Overall, the addition of chitosan increased the interaction with antibodies and enhanced signaling in all tests. This work demonstrated that the adaptation of a PcsELISA shows potential as a cost-effective alternative assay platform easily adaptable in deployable testing sites that also showed reduction in reagent volumes by 80% and assay run time by seventh. While dipstick assays were previously developed, paper-based assays are a cost-effective and field-deployable alternative, reducing volumes of reagents that could be used in malaria control and elimination settings.


Assuntos
Anopheles , Quitosana , Malária , Plasmodium , Animais , Esporozoítos/química , Esporozoítos/metabolismo , Plasmodium vivax , Proteínas de Protozoários/análise , Mosquitos Vetores , Plasmodium falciparum , Anopheles/metabolismo
13.
Malar J ; 22(1): 48, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759908

RESUMO

BACKGROUND: Malaria, transmitted by the bite of infective female Anopheles mosquitoes, remains a global public health problem. The presence of an invasive Anopheles stephensi, capable of transmitting Plasmodium vivax and Plasmodium falciparum parasites was first reported in Ethiopia in 2016. The ecology of An. stephensi is different from that of Anopheles arabiensis, the primary Ethiopian malaria vector, and this suggests that alternative control strategies may be necessary. Larviciding may be an effective alternative strategy, but there is limited information on the susceptibility of Ethiopian An. stephensi to common larvicides. This study aimed to evaluate the efficacy of temephos and Bacillus thuringiensis var. israelensis (Bti) larvicides against larvae of invasive An. stephensi. METHODS: The diagnostic doses of two larvicides, temephos (0.25 ml/l) and Bti (0.05 mg/l) were tested in the laboratory against the immature stages (late third to early fourth stages larvae) of An. stephensi collected from the field and reared in a bio-secure insectary. Larvae were collected from two sites (Haro Adi and Awash Subuh Kilo). For each site, three hundred larvae were tested against each insecticide (as well as an untreated control), in batches of 25. The data from all replicates were pooled and descriptive statistics prepared. RESULTS: The mortality of larvae exposed to temephos was 100% for both sites. Mortality to Bti was 99.7% at Awash and 100% at Haro Adi site. CONCLUSIONS: Larvae of An. stephensi are susceptible to temephos and Bti larvicides suggesting that larviciding with these insecticides through vector control programmes may be effective against An. stephensi in these localities.


Assuntos
Anopheles , Bacillus thuringiensis , Inseticidas , Malária , Animais , Feminino , Humanos , Temefós/farmacologia , Larva , Etiópia , Mosquitos Vetores , Inseticidas/farmacologia
14.
Int J Parasitol Parasites Wildl ; 20: 138-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36845223

RESUMO

Sucking lice live in intimate association with their hosts and often display a high degree of host specificity. The present study investigated sucking lice of the genus Lemurpediculus from six mouse lemur (Microcebus) and two dwarf lemur (Cheirogaleus) species endemic to the island of Madagascar, considered a biodiversity hotspot. Louse phylogenetic trees were created based on cytochrome C oxidase subunit I (COI), elongation factor 1α (EF1α) and internal transcribed spacer 1 (ITS1) sequences. While clustering according to host species was generally observed for COI and ITS1, suggesting high host specificity of the examined lice, EF1α sequences alone did not distinguish between lice of different Microcebus species, possibly due to rather recent divergence. As bootstrap support for basal tree structure was rather low, further data are necessary to resolve the evolutionary history of louse-mouse lemur associations. Three new species of sucking lice are described: Lemurpediculus zimmermanni sp. Nov. From Microcebus ravelobensis, Lemurpediculus gerpi sp.nov. from Microcebus gerpi, and Lemurpediculus tsimanampesotsae sp. nov. from Microcebus griseorufus. These new species are compared with all known congeneric species and identifying features are illustrated for all known species of Lemurpediculus.

15.
Sci Rep ; 13(1): 876, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650185

RESUMO

Anopheles stephensi, an invasive malaria vector native to South Asia and the Arabian Peninsula, was detected in Djibouti's seaport, followed by Ethiopia, Sudan, Somalia, and Nigeria. If An. stephensi introduction is facilitated through seatrade, similar to other invasive mosquitoes, the identification of at-risk countries are needed to increase surveillance and response efforts. Bilateral maritime trade data is used to (1) identify coastal African countries which were highly connected to select An. stephensi endemic countries, (2) develop a prioritization list of countries based on the likelihood of An. stephensi introduction through maritime trade index (LASIMTI), and (3) use network analysis of intracontinental maritime trade to determine likely introduction pathways. Sudan and Djibouti were ranked as the top two countries with LASIMTI in 2011, which were the first two coastal African countries where An. stephensi was detected. With Djibouti and Sudan included as source populations, 2020 data identify Egypt, Kenya, Mauritius, Tanzania, and Morocco as the top countries with LASIMTI. Network analysis highlight South Africa, Mauritius, Ghana, and Togo. These tools can prioritize efforts for An. stephensi surveillance and control in Africa. Surveillance in seaports of identified countries may limit further expansion of An. stephensi by serving as an early warning system.


Assuntos
Anopheles , Malária , Animais , Humanos , Anopheles/fisiologia , Malária/epidemiologia , Mosquitos Vetores/fisiologia , Etiópia , Djibuti
16.
Citiz Sci ; 8(1)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38616822

RESUMO

Even as novel technologies emerge and medicines advance, pathogen-transmitting mosquitoes pose a deadly and accelerating public health threat. Detecting and mitigating the spread of Anopheles stephensi in Africa is now critical to the fight against malaria, as this invasive mosquito poses urgent and unprecedented risks to the continent. Unlike typical African vectors of malaria, An. stephensi breeds in both natural and artificial water reservoirs, and flourishes in urban environments. With An. stephensi beginning to take hold in heavily populated settings, citizen science surveillance supported by novel artificial intelligence (AI) technologies may offer impactful opportunities to guide public health decisions and community-based interventions. Coalitions like the Global Mosquito Alert Consortium (GMAC) and our freely available digital products can be incorporated into enhanced surveillance of An. stephensi and other vector-borne public health threats. By connecting local citizen science networks with global databases that are findable, accessible, interoperable, and reusable (FAIR), we are leveraging a powerful suite of tools and infrastructure for the early detection of, and rapid response to, (re)emerging vectors and diseases.

17.
Malar J ; 21(1): 378, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494724

RESUMO

BACKGROUND: Human landing catches (HLC) are an entomological collection technique in which humans are used as attractants to capture medically relevant host-seeking mosquitoes. The use of this method has been a topic of extensive debate for decades mainly due to ethical concerns. Many alternatives to HLC have been proposed; however, no quantitative review and meta-analysis comparing HLC to outdoor alternative trapping methods has been conducted. METHODS: A total of 58 comparisons across 12 countries were identified. We conducted a meta-analysis comparing the standardized mean difference of Anopheles captured by HLC and alternative traps. To explain heterogeneity, three moderators were chosen for analysis: trap type, location of study, and species captured. A meta-regression was fit to understand how the linear combination of moderators helped in explaining heterogeneity. The possibility of biased results due to publication bias was also explored. RESULTS: Random-effects meta-analysis showed no statistically significant difference in the mean difference of Anopheles collected. Moderator analysis was conducted to determine the effects of trap type, geographical location of study, and the species of Anopheles captured. On average, tent-based traps captured significantly more Anopheles than outdoor HLC (95% CI: [- .9065, - 0.0544]), alternative traps in Africa captured on average more mosquitoes than outdoor HLC (95% CI: [- 2.8750, - 0.0294]), and alternative traps overall captured significantly more Anopheles gambiae s.l. than outdoor HLC (95% CI: [- 4.4613, - 0.2473]) on average. Meta-regression showed that up to 55.77% of the total heterogeneity found can be explained by a linear combination of the three moderators and the interaction between trap type and species. Subset analysis on An. gambiae s.l. showed that light traps specifically captured on average more of this species than HLC (95% CI: [- 18.3751, - 1.0629]). Publication bias likely exists. With 59.65% of studies reporting p-values less than 0.025, we believe there is an over representation in the literature of results indicating that alternative traps are superior to outdoor HLC. CONCLUSIONS: Currently, there is no consensus on a single "magic bullet" alternative to outdoor HLC. The diversity of many alternative trap comparisons restricts potential metrics for comparisons to outdoor HLC. Further standardization and specific question-driven trap evaluations that consider target vector species and the vector control landscape are needed to allow for robust meta-analyses with less heterogeneity and to develop data-driven decision-making tools for malaria vector surveillance and control.


Assuntos
Anopheles , Malária , Animais , Humanos , Malária/prevenção & controle , Mosquitos Vetores , Entomologia/métodos , África , Controle de Mosquitos/métodos
18.
Malar J ; 21(1): 295, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271447

RESUMO

BACKGROUND: The use of synthetic insecticides against mosquitoes may lead to resistance development and potential health hazards in humans and the environment. Consequently, a paradigm needs to shift towards the alternative use of botanical insecticides that could strengthen an insecticide resistance management programme. This study aimed to assess the insecticidal effects aqueous, hexane, and methanol crude leaf extracts of Calpurnia aurea, Momordica foetida, and Zehneria scabra on an insectary colony of Anopheles stephensi larvae and adults. METHODS: Fresh leaves of C. aurea, M. foetida and Z. scabra were collected and dried, then separately ground to powder. Powdered leaves of test plants were extracted using sonication with aqueous, hexane, and methanol solvents. The extracts were concentrated, and a stock solution was prepared. For comparison, Temephos (Abate®) and control solutions (a mixture of water and emulsifier) were used as the positive and negative controls, respectively. Different test concentrations for the larvae and the adults were prepared and tested according to WHO (2005) and CDC (2010) guidelines to determine lethal concentration (LC) values. Mortality was observed after 24 h exposure. The statistical analyses were performed using Statistical Package for the Social Sciences (SPSS) software (Kruskal-Wallis test) and R software (a generalized linear model was used to determine LC50 and LC90 values of the extracts). RESULTS: The lowest LC50 values were observed in aqueous extracts of M. foetida followed by Z. scabra extract and C. aurea leaves at 34.61, 35.85, and 38.69 ppm, respectively, against the larvae. Larval mortality was not observed from the hexane extracts and negative control, while the standard larvicide (temephos) achieved 100% mortality. Further, the adulticidal efficacy was greatest for aqueous extract of Z. scabra with LC50 = 176.20 ppm followed by aqueous extract of C. aurea (LC50 = 297.75 ppm). CONCLUSION: The results suggest that the leaf extracts of the three test plants have the potential of being used for the control of vector An. stephensi larvae and adult instead of synthetic mosquitocides. Further studies need to be conducted to identify the active ingredients and their mode of action.


Assuntos
Aedes , Anopheles , Culex , Culicidae , Inseticidas , Humanos , Animais , Inseticidas/farmacologia , Hexanos/farmacologia , Temefós/farmacologia , Metanol/farmacologia , Pós/farmacologia , Mosquitos Vetores , Larva , Extratos Vegetais/farmacologia , Solventes/farmacologia , Água , Folhas de Planta
19.
Artigo em Inglês | MEDLINE | ID: mdl-36248356

RESUMO

Long-lasting insecticide-treated nets (LLINs) are widely distributed to communities where malaria is a major cause of mortality, especially to those under the age of 5 years-old. To protect people from this illness, LLINs provide physical and chemical barriers by containing insecticides within the matrix of the polymer fibers or on the surface. Synthetic polymers including polyethylene and polyester are common material choices for these nets, and pyrethroids, along with other additives, are the insecticides of choice for this application. Many studies have shown the effectiveness of these nets on the impact of malaria is highly significant, but there is a demand for more durable nets that last longer than only a few years as the available products are rated for 2-3 years of use. Improvements in this area would increase cost effectiveness, because better durability would reduce the frequency of manufacturing and worldwide shipping. Additionally, due to the plastic fibers, the waste can build quickly, damaging the environment. To deal with the sustainability and durability issues, biodegradable and renewable materials should be chosen as an alternative.

20.
Acta Trop ; 236: 106671, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36058292

RESUMO

Anopheles stephensi, a malaria vector species previously only known from Asia, was first detected in Africa in Djibouti in 2012, has been subsequently collected in Ethiopia, Sudan, and Somalia, and may be spreading further. Countries may wish to implement mosquito surveys to determine if An. stephensi is present, or to determine the extent of its distribution, if present. Furthermore, mosquito surveys can provide data on the bionomics of An. stephensi and its adaptation to the local environment that can help plan and implement control activities. The present strategies provide suggestions on surveillance approaches for monitoring An. stephensi. The first step is to determine the aim of the study, as this will determine the specific activities conducted in each location. Challenges related to identification and detection of resistance and sporozoites are also discussed. Results should be communicated to relevant stakeholders in a timely manner, both in country and internationally, to help understand the introduction, distribution, and bionomics of An. stephensi in a given country and work towards cross-border and coordinated international response.


Assuntos
Anopheles , Malária , Animais , Anopheles/fisiologia , Etiópia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Esporozoítos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...